新聞中心

聯(lián)系我們
  • 聯(lián)系地址:廣東省廣州市天河區(qū)科新路優(yōu)可商務(wù)中心B棟
  • 服務(wù)熱線:020-85279740
  • 聯(lián)系電話:020-85279740(8線) 020-37889427
  • 傳真電話:020-85279740

利達(dá)信:什么是人工智能(AI)?

發(fā)表時間:2023年11月30日瀏覽量:

利達(dá)信:什么是人工智能(AI)?

人工智能(AI)是計(jì)算機(jī)系統(tǒng)的理論和發(fā)展,能夠執(zhí)行歷史上需要人類智能的任務(wù),例如識別語音、做出決策和識別模式。AI是一個總稱,涵蓋了多種技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和自然語言處理(NLP)。

盡管該術(shù)語通常用于描述當(dāng)今使用的一系列不同技術(shù),但許多人對這些技術(shù)是否真的構(gòu)成人工智能存在分歧。相反,一些人認(rèn)為,當(dāng)今現(xiàn)實(shí)世界中使用的大部分技術(shù)實(shí)際上構(gòu)成了高度先進(jìn)的機(jī)器學(xué)習(xí),這只是邁向真正人工智能或“通用人工智能”(GAI)的第一步。

然而,盡管關(guān)于“真正的”智能機(jī)器是否真的存在許多哲學(xué)分歧,但當(dāng)大多數(shù)人今天使用人工智能一詞時,他們指的是一套機(jī)器學(xué)習(xí)驅(qū)動的技術(shù),例如聊天GPT或計(jì)算機(jī)視覺,這些技術(shù)使機(jī)器能夠執(zhí)行以前只有人類才能完成的任務(wù),例如生成書面內(nèi)容、駕駛汽車、或分析數(shù)據(jù)。

人工智能是如何工作的?

隨著圍繞人工智能的炒作加速,供應(yīng)商一直在爭先恐后地宣傳他們的產(chǎn)品和服務(wù)如何使用它。通常,他們所說的人工智能只是技術(shù)的一個組成部分,例如機(jī)器學(xué)習(xí)。人工智能需要專門的硬件和軟件基礎(chǔ)來編寫和訓(xùn)練機(jī)器學(xué)習(xí)算法。沒有一種編程語言是人工智能的代名詞,但Python,R,Java,C++和Julia具有AI開發(fā)人員流行的功能。
通常,AI系統(tǒng)的工作方式是攝取大量標(biāo)記的訓(xùn)練數(shù)據(jù),分析數(shù)據(jù)中的相關(guān)性和模式,并使用這些模式對未來狀態(tài)進(jìn)行預(yù)測。通過這種方式,提供文本示例的聊天機(jī)器人可以學(xué)習(xí)與人進(jìn)行逼真的交流,或者圖像識別工具可以通過查看數(shù)百萬個示例來學(xué)習(xí)識別和描述圖像中的對象。新的、快速改進(jìn)的生成式人工智能技術(shù)可以創(chuàng)建逼真的文本、圖像、音樂和其他媒體。
AI編程側(cè)重于認(rèn)知技能,包括以下內(nèi)容:
  • 學(xué)習(xí)。人工智能編程的這一方面?zhèn)戎赜讷@取數(shù)據(jù)并創(chuàng)建如何將其轉(zhuǎn)化為可操作信息的規(guī)則。這些規(guī)則稱為算法,為計(jì)算設(shè)備提供有關(guān)如何完成特定任務(wù)的分步說明。
  • 推理。人工智能編程的這一方面?zhèn)戎赜谶x擇正確的算法以達(dá)到預(yù)期的結(jié)果。
  • 自我糾正。人工智能編程的這一方面旨在不斷微調(diào)算法,并確保它們提供最準(zhǔn)確的結(jié)果。
  • 創(chuàng)造力。 人工智能的這一方面使用神經(jīng)網(wǎng)絡(luò)、基于規(guī)則的系統(tǒng)、統(tǒng)計(jì)方法和其他人工智能技術(shù)來生成新圖像、新文本、新音樂和新想法。

人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

人工智能機(jī)器學(xué)習(xí)深度學(xué)習(xí)是企業(yè)IT中的常用術(shù)語,有時可以互換使用,尤其是公司在其營銷材料中。但也有區(qū)別。人工智能一詞創(chuàng)造 1950年代,指的是機(jī)器對人類智能的模擬。隨著新技術(shù)的開發(fā),它涵蓋了一組不斷變化的功能。人工智能旗下的技術(shù)包括機(jī)器學(xué)習(xí)和深度學(xué)習(xí)。
機(jī)器學(xué)習(xí)使軟件應(yīng)用程序能夠更準(zhǔn)確地預(yù)測結(jié)果,而無需明確編程。機(jī)器學(xué)習(xí)算法使用歷史數(shù)據(jù)作為輸入來預(yù)測新的輸出值。隨著用于訓(xùn)練的大型數(shù)據(jù)集的興起,這種方法變得更加有效。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個子集,它基于我們對大腦結(jié)構(gòu)的理解。深度學(xué)習(xí)對人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的使用是人工智能最新進(jìn)展的基礎(chǔ),包括自動駕駛汽車和ChatGPT。

為什么人工智能很重要?

人工智能因其改變我們生活、工作和娛樂方式的潛力而具有重要意義。它已被有效地用于商業(yè)自動化人類完成的任務(wù),包括客戶服務(wù)工作、潛在客戶生成、欺詐檢測和質(zhì)量控制。在許多領(lǐng)域,人工智能可以比人類更好地執(zhí)行任務(wù)。特別是當(dāng)涉及到重復(fù)的、注重細(xì)節(jié)的任務(wù)時,例如分析大量法律文件以確保正確填寫相關(guān)字段,人工智能工具通常可以快速完成工作,錯誤相對較少。由于它可以處理海量數(shù)據(jù)集,人工智能還可以讓企業(yè)深入了解他們可能沒有意識到的運(yùn)營情況。快速增長的生成式人工智能工具在從教育和營銷到產(chǎn)品設(shè)計(jì)等領(lǐng)域都很重要。
事實(shí)上,人工智能技術(shù)的進(jìn)步不僅推動了效率的爆炸式增長,而且為一些大型企業(yè)打開了通往全新商機(jī)的大門。在當(dāng)前的人工智能浪潮之前,很難想象使用計(jì)算機(jī)軟件將乘客與出租車聯(lián)系起來,但Uber已經(jīng)通過這樣做成為財(cái)富500強(qiáng)公司。
人工智能已成為當(dāng)今許多最大和最成功的公司的核心,包括Alphabet,Apple,Microsoft和Meta,在這些公司中,AI技術(shù)被用來改善運(yùn)營并超越競爭對手。例如,在Alphabet的子公司谷歌,人工智能是其搜索引擎Waymo的自動駕駛汽車和GoogleBrain的核心,后者發(fā)明了transformer神經(jīng)網(wǎng)絡(luò)架構(gòu),該架構(gòu)支撐了自然語言處理的最新突破。
 

人工智能的優(yōu)缺點(diǎn)是什么?

人工神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)人工智能技術(shù)正在迅速發(fā)展,主要是因?yàn)槿斯ぶ悄芸梢员热祟惛斓靥幚泶罅繑?shù)據(jù),并做出更準(zhǔn)確的預(yù)測。
雖然每天產(chǎn)生的大量數(shù)據(jù)會讓人類研究人員陷入困境,但使用機(jī)器學(xué)習(xí)的人工智能應(yīng)用程序可以獲取這些數(shù)據(jù)并快速將其轉(zhuǎn)化為可操作的信息。在撰寫本文時,人工智能的一個主要缺點(diǎn)是處理人工智能編程所需的大量數(shù)據(jù)成本高昂。隨著人工智能技術(shù)被納入更多的產(chǎn)品和服務(wù)中,組織還必須適應(yīng)人工智能有意或無意地創(chuàng)建有偏見和歧視性的系統(tǒng)的潛力。

人工智能的優(yōu)勢

以下是人工智能的一些優(yōu)勢。
  • 擅長注重細(xì)節(jié)的工作。事實(shí)證明,人工智能在診斷某些癌癥(包括乳腺癌和黑色素瘤)方面與醫(yī)生一樣好,甚至更好。
  • 縮短了數(shù)據(jù)密集型任務(wù)的時間。人工智能廣泛應(yīng)用于數(shù)據(jù)密集型行業(yè),包括銀行和證券、制藥和保險(xiǎn),以減少分析大數(shù)據(jù)集所需的時間。例如,金融服務(wù)部門經(jīng)常使用人工智能來處理貸款申請和檢測欺詐行為。
  • 節(jié)省勞動力,提高生產(chǎn)率。這里的一個例子是倉庫自動化的使用,它在大流行期間有所增長,預(yù)計(jì)隨著人工智能和機(jī)器學(xué)習(xí)的整合而增加。
  • 提供一致的結(jié)果。最好的AI翻譯工具可提供高度的一致性,即使是小型企業(yè)也能以客戶的母語接觸客戶。
  • 可以通過個性化提高客戶滿意度。 人工智能可以為個人客戶提供個性化的內(nèi)容、消息傳遞、廣告、推薦和網(wǎng)站。
  • AI驅(qū)動的虛擬代理始終可用。人工智能程序不需要睡覺或休息,提供24/7全天候服務(wù)。

人工智能的缺點(diǎn)

以下是人工智能的一些缺點(diǎn)。
  • 貴。
  • 需要深厚的技術(shù)專長。
  • 用于構(gòu)建人工智能工具的合格工人供應(yīng)有限。
  • 大規(guī)模反映其訓(xùn)練數(shù)據(jù)的偏差。
  • 缺乏從一項(xiàng)任務(wù)推廣到另一項(xiàng)任務(wù)的能力。
  • 消除了人類工作,增加了失業(yè)率。

強(qiáng)AI與弱AI

人工智能可以分為弱或強(qiáng)。
  •  AI,也稱為狹義AI,旨在完成特定任務(wù)并對其進(jìn)行訓(xùn)練。工業(yè)機(jī)器人和虛擬個人助理,如蘋果的Siri,使用弱人工智能。
  • 強(qiáng)人工智能,也稱為通用人工智能 (AGI),描述了可以復(fù)制人腦認(rèn)知能力的編程。當(dāng)面臨不熟悉的任務(wù)時,強(qiáng)大的人工智能系統(tǒng)可以使用模糊邏輯將知識從一個領(lǐng)域應(yīng)用到另一個領(lǐng)域,并自主找到解決方案。從理論上講,一個強(qiáng)大的人工智能程序應(yīng)該能夠通過圖靈測試和中國房間論證。

人工智能的4種類型是什么?

密歇根州立大學(xué)(MichiganStateUniversity)綜合生物學(xué)和計(jì)算機(jī)科學(xué)與工程助理教授ArendHintze解釋說,人工智能可以分為四種類型,從今天廣泛使用的特定任務(wù)智能系統(tǒng)開始,到尚不存在的感知系統(tǒng)。類別如下。
  • 類型1:反應(yīng)式機(jī)器。這些AI系統(tǒng)沒有內(nèi)存,并且是特定于任務(wù)的。一個例子是DeepBlue,這是IBM國際象棋程序,在1990年代擊敗了GarryKasparov。深藍(lán)可以識別棋盤上的棋子并做出預(yù)測,但由于它沒有記憶,它不能使用過去的經(jīng)驗(yàn)來告知未來的經(jīng)驗(yàn)。
  • 類型2:內(nèi)存有限。這些人工智能系統(tǒng)具有記憶力,因此它們可以利用過去的經(jīng)驗(yàn)為未來的決策提供信息。自動駕駛汽車中的一些決策功能就是這樣設(shè)計(jì)的。
  • 類型3:心理理論。心理理論是一個心理學(xué)術(shù)語。當(dāng)應(yīng)用于人工智能時,這意味著該系統(tǒng)將具有理解情緒的社會智能。這種類型的人工智能將能夠推斷人類的意圖并預(yù)測行為,這是人工智能系統(tǒng)成為人類團(tuán)隊(duì)不可或缺的成員的必要技能。
  • 類型4:自我意識。在這個類別中,人工智能系統(tǒng)具有自我意識,這賦予了它們意識。具有自我意識的機(jī)器了解自己的當(dāng)前狀態(tài)。這種類型的人工智能尚不存在。
 

人工智能技術(shù)的應(yīng)用場景,今天如何使用它?

人工智能被整合到各種不同類型的技術(shù)中。這里有七個例子。
自動化。當(dāng)與人工智能技術(shù)結(jié)合使用時,自動化工具可以擴(kuò)展所執(zhí)行任務(wù)的數(shù)量和類型。一個例子是機(jī)器人流程自動化(RPA),這是一種軟件,可以自動執(zhí)行傳統(tǒng)上由人類完成的重復(fù)的、基于規(guī)則的數(shù)據(jù)處理任務(wù)。當(dāng)與機(jī)器學(xué)習(xí)和新興的AI工具相結(jié)合時,RPA可以自動執(zhí)行大部分企業(yè)作業(yè),使RPA的戰(zhàn)術(shù)機(jī)器人能夠傳遞來自AI的情報(bào)并響應(yīng)流程變化。
機(jī)器學(xué)習(xí)。這是讓計(jì)算機(jī)無需編程即可運(yùn)行的科學(xué)。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個子集,簡單來說,可以被認(rèn)為是預(yù)測分析的自動化。機(jī)器學(xué)習(xí)算法有三種類型:
  • 監(jiān)督學(xué)習(xí)對數(shù)據(jù)集進(jìn)行標(biāo)記,以便可以檢測模式并用于標(biāo)記新數(shù)據(jù)集。
  • 無監(jiān)督學(xué)習(xí)數(shù)據(jù)集不會被標(biāo)記,而是根據(jù)相似性或差異性進(jìn)行排序。
  • 強(qiáng)化學(xué)習(xí)數(shù)據(jù)集不會被標(biāo)記,但在執(zhí)行一項(xiàng)或多項(xiàng)操作后,人工智能系統(tǒng)會得到反饋。
機(jī)器視覺。這項(xiàng)技術(shù)使機(jī)器能夠看到。機(jī)器視覺使用攝像頭、模數(shù)轉(zhuǎn)換和數(shù)字信號處理來捕獲和分析視覺信息。它經(jīng)常被比作人類的視力,但機(jī)器視覺不受生物學(xué)的束縛,例如,可以被編程為穿透墻壁。它用于從特征識別到醫(yī)學(xué)圖像分析的一系列應(yīng)用。專注于基于機(jī)器的圖像處理的計(jì)算機(jī)視覺經(jīng)常與機(jī)器視覺混為一談。
自然語言處理(NLP)。這是計(jì)算機(jī)程序?qū)θ祟愓Z言的處理。NLP最古老和最著名的例子之一是垃圾郵件檢測,它查看電子郵件的主題行和文本并確定它是否是垃圾郵件。目前的NLP方法基于機(jī)器學(xué)習(xí)。NLP任務(wù)包括文本翻譯、情感分析和語音識別。
機(jī)器人。該工程領(lǐng)域?qū)W⒂跈C(jī)器人的設(shè)計(jì)和制造。機(jī)器人通常用于執(zhí)行人類難以執(zhí)行或一致執(zhí)行的任務(wù)。例如,機(jī)器人被用于汽車生產(chǎn)裝配線或美國宇航局在太空中移動大型物體。研究人員還使用機(jī)器學(xué)習(xí)來構(gòu)建可以在社交環(huán)境中互動的機(jī)器人。
自動駕駛汽車。自動駕駛汽車結(jié)合使用計(jì)算機(jī)視覺、圖像識別和深度學(xué)習(xí)來構(gòu)建自動化技能,以駕駛車輛,同時保持在給定的車道上并避開行人等意外障礙物。
文本、圖像和音頻生成。生成式人工智能技術(shù)從文本提示創(chuàng)建各種類型的媒體,正在企業(yè)中廣泛應(yīng)用,以創(chuàng)建從逼真的藝術(shù)到電子郵件回復(fù)和劇本的看似無限的內(nèi)容類型。
人工智能不僅僅是一種技術(shù)。

人工智能不僅僅是一種技術(shù)。

人工智能有哪些應(yīng)用?

人工智能已經(jīng)進(jìn)入了各種各樣的市場。這里有11個例子。
  • 醫(yī)療保健中的人工智能。最大的賭注是改善患者的治療效果和降低成本。公司正在應(yīng)用機(jī)器學(xué)習(xí)來做出比人類更好、更快的醫(yī)療診斷。最著名的醫(yī)療保健技術(shù)之一是IBMWatson。它理解自然語言,并能回答向它提出的問題。該系統(tǒng)挖掘患者數(shù)據(jù)和其他可用數(shù)據(jù)源以形成假設(shè),然后以置信度評分模式呈現(xiàn)該假設(shè)。其他人工智能應(yīng)用包括使用在線虛擬健康助手和聊天機(jī)器人來幫助患者和醫(yī)療保健客戶查找醫(yī)療信息、安排預(yù)約、了解計(jì)費(fèi)流程和完成其他管理流程。一系列人工智能技術(shù)也被用于預(yù)測、對抗和理解 疫情等流行病。
  • 商業(yè)中的人工智能。機(jī)器學(xué)習(xí)算法正在被集成到分析和客戶關(guān)系管理(CRM)平臺中,以發(fā)現(xiàn)有關(guān)如何更好地為客戶服務(wù)的信息。聊天機(jī)器人已被納入網(wǎng)站,為客戶提供即時服務(wù)。ChatGPT 等生成式AI技術(shù)的快速發(fā)展預(yù)計(jì)將產(chǎn)生深遠(yuǎn)的影響:消除工作崗位、徹底改變產(chǎn)品設(shè)計(jì)和顛覆商業(yè)模式。
  • 人工智能在教育中的應(yīng)用。人工智能可以自動評分,讓教育工作者有更多時間完成其他任務(wù)。它可以評估學(xué)生并適應(yīng)他們的需求,幫助他們按照自己的節(jié)奏工作。人工智能導(dǎo)師可以為學(xué)生提供額外的支持,確保他們保持在正軌上。這項(xiàng)技術(shù)還可以改變學(xué)生的學(xué)習(xí)地點(diǎn)和方式,甚至可能取代一些教師。正如ChatGPT、GoogleBard 和其他大型語言模型所展示的那樣,生成式AI可以幫助教育工作者制作課程作業(yè)和其他教材,并以新的方式吸引學(xué)生。這些工具的出現(xiàn)也迫使教育工作者重新思考學(xué)生的家庭作業(yè)和測試,并修改有關(guān)剽竊的政策。
  • 人工智能在金融領(lǐng)域的應(yīng)用。個人理財(cái)應(yīng)用中的人工智能,如IntuitMint或TurboTax,正在顛覆金融機(jī)構(gòu)。此類應(yīng)用程序收集個人數(shù)據(jù)并提供財(cái)務(wù)建議。其他程序,如IBMWatson,已被應(yīng)用于購房過程。今天,人工智能軟件執(zhí)行了華爾街的大部分交易。
  • 人工智能在法律中的應(yīng)用。法律上的發(fā)現(xiàn)過程-篩選文件-對人類來說往往是壓倒性的。使用AI幫助實(shí)現(xiàn)法律行業(yè)勞動密集型流程的自動化,可以節(jié)省時間并改善客戶服務(wù)。律師事務(wù)所使用機(jī)器學(xué)習(xí)來描述數(shù)據(jù)和預(yù)測結(jié)果,使用計(jì)算機(jī)視覺從文檔中分類和提取信息,并使用NLP來解釋信息請求。
  • 人工智能在娛樂和媒體中的應(yīng)用。娛樂業(yè)使用人工智能技術(shù)進(jìn)行有針對性的廣告、推薦內(nèi)容、分發(fā)、檢測欺詐、創(chuàng)建腳本和制作電影。自動化新聞幫助新聞編輯室簡化媒體工作流程,減少時間、成本和復(fù)雜性。新聞編輯室使用人工智能來自動化日常任務(wù),例如數(shù)據(jù)輸入和校對;并研究主題并協(xié)助頭條新聞。新聞業(yè)如何可靠地使用ChatGPT和其他生成式AI來生成內(nèi)容還有待商榷。
  • 軟件編碼和IT流程中的AI。新的生成式AI工具可用于根據(jù)自然語言提示生成應(yīng)用程序代碼,但這些工具還處于早期階段,它們不太可能很快取代軟件工程師。人工智能還被用于自動化許多IT流程,包括數(shù)據(jù)輸入、欺詐檢測、客戶服務(wù)以及預(yù)測性維護(hù)和安全。
  • 安全。人工智能和機(jī)器學(xué)習(xí)是安全供應(yīng)商用來推銷其產(chǎn)品的流行語列表的首位,因此買家應(yīng)謹(jǐn)慎對待。盡管如此,人工智能技術(shù)仍被成功應(yīng)用于網(wǎng)絡(luò)安全的多個方面,包括異常檢測、解決誤報(bào)問題和進(jìn)行行為威脅分析。組織在安全信息和事件管理(SIEM) 軟件和相關(guān)領(lǐng)域使用機(jī)器學(xué)習(xí)來檢測異常并識別表明威脅的可疑活動。通過分析數(shù)據(jù)并使用邏輯來識別與已知惡意代碼的相似之處,人工智能可以比人類員工和以前的技術(shù)迭代更快地為新的和新興的攻擊提供警報(bào)。
  • 制造業(yè)中的人工智能。制造業(yè)一直處于將機(jī)器人納入工作流程的最前沿。例如,曾經(jīng)被編程為執(zhí)行單一任務(wù)并與人類工人分離的工業(yè)機(jī)器人越來越多地充當(dāng)協(xié)作機(jī)器人:更小的多任務(wù)機(jī)器人,與人類協(xié)作,并承擔(dān)倉庫、工廠車間和其他工作空間中更多部分的工作。
  • 人工智能在銀行業(yè)的應(yīng)用。銀行正在成功地使用聊天機(jī)器人來讓客戶了解服務(wù)和產(chǎn)品,并處理不需要人工干預(yù)的交易。人工智能虛擬助手用于改善和降低遵守銀行法規(guī)的成本。銀行組織使用人工智能來改善貸款決策、設(shè)置信用額度和識別投資機(jī)會。
  • 人工智能在交通領(lǐng)域的應(yīng)用。 除了人工智能在運(yùn)營自動駕駛汽車方面的基本作用外,人工智能技術(shù)還用于運(yùn)輸,以管理交通、預(yù)測航班延誤,并使海運(yùn)更安全、更高效。在供應(yīng)鏈中,人工智能正在取代預(yù)測需求和預(yù)測中斷的傳統(tǒng)方法,疫情加速了這一趨勢,當(dāng)時許多公司因全球大流行對商品供需的影響而措手不及。

增強(qiáng)智能與人工智能

一些行業(yè)專家認(rèn)為,人工智能一詞與流行文化的聯(lián)系過于緊密,這導(dǎo)致公眾對人工智能將如何改變工作場所和生活抱有難以置信的期望。他們建議使用“增強(qiáng)智能”一詞來區(qū)分自主行動的人工智能系統(tǒng)(流行文化的例子包括Hal9000和終結(jié)者)和支持人類的人工智能工具。
  • 增強(qiáng)智能。一些研究人員和營銷人員希望具有更中性內(nèi)涵的“增強(qiáng)智能”標(biāo)簽將幫助人們理解大多數(shù)人工智能的實(shí)現(xiàn)將是薄弱的,而只是改進(jìn)產(chǎn)品和服務(wù)。示例包括在商業(yè)智能報(bào)告中自動顯示重要信息或在法律文件中突出顯示重要信息。ChatGPT和Bard在各行各業(yè)的迅速采用表明他們愿意使用人工智能來支持人類決策。
  • 人工智能。真正的人工智能(AGI)與技術(shù)奇點(diǎn)的概念密切相關(guān),奇點(diǎn)是一個由人工超級智能統(tǒng)治的未來,遠(yuǎn)遠(yuǎn)超過了人腦理解它的能力,或者它如何塑造我們的現(xiàn)實(shí)。這仍然屬于科幻小說的范疇,盡管一些開發(fā)人員正在研究這個問題。許多人認(rèn)為,量子計(jì)算等技術(shù)可以在使AGI成為現(xiàn)實(shí)方面發(fā)揮重要作用,我們應(yīng)該保留使用AI一詞來表示這種通用智能。

合乎道德地使用人工智能

雖然人工智能工具為企業(yè)提供了一系列新功能,但人工智能的使用也引發(fā)了倫理問題,因?yàn)闊o論好壞,人工智能系統(tǒng)都會強(qiáng)化它已經(jīng)學(xué)到的東西。
這可能是有問題的,因?yàn)闄C(jī)器學(xué)習(xí)算法是許多最先進(jìn)的人工智能工具的基礎(chǔ),其智能程度取決于它們在訓(xùn)練中獲得的數(shù)據(jù)。由于人類選擇用于訓(xùn)練AI程序的數(shù)據(jù),因此機(jī)器學(xué)習(xí)偏差的可能性是固有的,必須密切監(jiān)控。
任何希望將機(jī)器學(xué)習(xí)用作現(xiàn)實(shí)世界生產(chǎn)系統(tǒng)的一部分的人都需要將道德因素納入其AI訓(xùn)練過程,并努力避免偏見。當(dāng)使用在深度學(xué)習(xí)和生成對抗網(wǎng)絡(luò)(GAN)應(yīng)用中固有無法解釋的AI算法時,尤其如此。
可解釋性是在嚴(yán)格的監(jiān)管合規(guī)要求下運(yùn)營的行業(yè)中使用人工智能的潛在絆腳石。例如,美國的金融機(jī)構(gòu)在規(guī)定下運(yùn)作,要求他們解釋其信貸發(fā)放決定。然而,當(dāng)拒絕信貸的決定是由人工智能編程做出的,可能很難解釋這個決定是如何做出的,因?yàn)橛糜谧龀鲞@種決定的人工智能工具是通過梳理出數(shù)千個變量之間的微妙相關(guān)性來運(yùn)作的。當(dāng)決策過程無法解釋時,該程序可以稱為黑匣子AI。
總而言之,人工智能的倫理挑戰(zhàn)包括:
  • 由于訓(xùn)練不當(dāng)?shù)乃惴ê腿藶槠姸鴮?dǎo)致的偏見。
  • 由于深度偽造和網(wǎng)絡(luò)釣魚導(dǎo)致的濫用。
  • 法律問題,包括人工智能誹謗和版權(quán)問題。
  • 由于人工智能能力的不斷增強(qiáng),工作崗位被淘汰。
  • 數(shù)據(jù)隱私問題,特別是在銀行、醫(yī)療保健和法律領(lǐng)域。
這些組件構(gòu)成了負(fù)責(zé)任的AI使用。
這些組件構(gòu)成了負(fù)責(zé)任的AI使用。

AI治理和法規(guī)

盡管存在潛在風(fēng)險(xiǎn),但目前很少有管理人工智能工具使用的法規(guī),而且即使存在法律,它們通常也間接與人工智能有關(guān)。例如,如前所述,美國公平貸款法規(guī)要求金融機(jī)構(gòu)向潛在客戶解釋信貸決策。這限制了貸方使用深度學(xué)習(xí)算法的程度,深度學(xué)習(xí)算法本質(zhì)上是不透明且缺乏可解釋性的。
歐盟的《通用數(shù)據(jù)保護(hù)條例》(GDPR)正在考慮人工智能法規(guī)。GDPR對企業(yè)如何使用消費(fèi)者數(shù)據(jù)的嚴(yán)格限制已經(jīng)限制了許多面向消費(fèi)者的AI應(yīng)用程序的訓(xùn)練和功能。
美國的政策制定者尚未發(fā)布人工智能立法,但這種情況可能很快就會改變。白宮科技政策辦公室(OSTP)于2022年10月發(fā)布的“人工智能權(quán)利藍(lán)圖”指導(dǎo)企業(yè)如何實(shí)施合乎道德的人工智能系統(tǒng)。美國商會在2023年3月發(fā)布的一份報(bào)告中也呼吁制定人工智能法規(guī)。
制定監(jiān)管人工智能的法律并不容易,部分原因是人工智能包含公司用于不同目的的各種技術(shù),部分原因是監(jiān)管可能以犧牲人工智能的進(jìn)步和發(fā)展為代價(jià)。人工智能技術(shù)的快速發(fā)展是形成有意義的人工智能監(jiān)管的另一個障礙,人工智能缺乏透明度帶來的挑戰(zhàn)也使得很難看到算法如何達(dá)到其結(jié)果。此外,ChatGPT和Dall-E等技術(shù)突破和新穎應(yīng)用可能會使現(xiàn)有法律立即過時。當(dāng)然,政府為監(jiān)管人工智能而制定的法律并不能阻止犯罪分子惡意使用這項(xiàng)技術(shù)。

從1950年的圖靈測試到今天的ChatGPT等生成式AI聊天機(jī)器人,AI有著悠久且有時有爭議的歷史。

人工智能的歷史是什么?

自古以來,賦予智能的無生命物體的概念就已經(jīng)存在。希臘神赫菲斯托斯在神話中被描繪成用黃金鍛造出類似機(jī)器人的仆人。古埃及的工程師建造了由祭司制作的神像。幾個世紀(jì)以來,從亞里士多德到13世紀(jì)西班牙神學(xué)家拉蒙·魯爾(RamonLlull),再到勒內(nèi)·笛卡爾(RenéDescartes)和托馬斯·貝葉斯(ThomasBayes),思想家們都使用他們那個時代的工具和邏輯將人類的思維過程描述為符號,為人工智能概念(如一般知識表示)奠定了基礎(chǔ)。
  • 19世紀(jì)末和20世紀(jì)上半葉帶來了產(chǎn)生現(xiàn)代計(jì)算機(jī)的基礎(chǔ)性工作。1836年,劍橋大學(xué)數(shù)學(xué)家查爾斯·巴貝奇(CharlesBabbage)和洛夫萊斯伯爵夫人奧古斯塔·阿達(dá)·金(AugustaAdaKing)發(fā)明了第一個可編程機(jī)器的設(shè)計(jì)。
  • 1940年代。普林斯頓大學(xué)數(shù)學(xué)家約翰·馮·諾依曼(JohnVonNeumann)構(gòu)思了存儲程序計(jì)算機(jī)的架構(gòu),即計(jì)算機(jī)的程序和它處理的數(shù)據(jù)可以保存在計(jì)算機(jī)的內(nèi)存中。WarrenMcCulloch和WalterPitts為神經(jīng)網(wǎng)絡(luò)奠定了基礎(chǔ)。
  • 1950年代。隨著現(xiàn)代計(jì)算機(jī)的出現(xiàn),科學(xué)家們可以測試他們對機(jī)器智能的想法。確定計(jì)算機(jī)是否具有智能的一種方法是由英國數(shù)學(xué)家和二戰(zhàn)密碼破譯者艾倫·圖靈(AlanTuring)設(shè)計(jì)的。圖靈測試的重點(diǎn)是計(jì)算機(jī)欺騙審訊者的能力,讓他們相信它對他們問題的回答是由人類做出的。
  • 1956. 現(xiàn)代人工智能領(lǐng)域被廣泛引用為從今年達(dá)特茅斯學(xué)院夏季會議開始。該會議由美國國防高級研究計(jì)劃局(DARPA)贊助,該領(lǐng)域的10位杰出人士出席了會議,其中包括人工智能先驅(qū)馬文·明斯基(MarvinMinsky)、奧利弗·塞爾弗里奇(OliverSelfridge)和約翰·麥卡錫(JohnMcCarthy),后者因創(chuàng)造了人工智能一詞而受到贊譽(yù)。出席會議的還有計(jì)算機(jī)科學(xué)家艾倫·紐厄爾(AllenNewell)和經(jīng)濟(jì)學(xué)家、政治學(xué)家和認(rèn)知心理學(xué)家赫伯特·西蒙(HerbertA.Simon)。兩人展示了他們開創(chuàng)性的邏輯理論家,這是一種能夠證明某些數(shù)學(xué)定理的計(jì)算機(jī)程序,被稱為第一個人工智能程序。
  • 1950年代和1960年代。 在達(dá)特茅斯學(xué)院會議之后,新興人工智能領(lǐng)域的領(lǐng)導(dǎo)者預(yù)測,相當(dāng)于人腦的人造智能即將到來,吸引了主要的政府和行業(yè)支持。事實(shí)上,近20年資金充足的基礎(chǔ)研究在人工智能領(lǐng)域取得了重大進(jìn)展:例如,在1950年代后期,紐厄爾和西蒙發(fā)表了通用問題求解器(GPS)算法,該算法未能解決復(fù)雜問題,但為開發(fā)更復(fù)雜的認(rèn)知架構(gòu)奠定了基礎(chǔ);McCarthy開發(fā)了 Lisp,一種至今仍在使用的AI編程語言。在1960年代中期,麻省理工學(xué)院教授約瑟夫·魏岑鮑姆(JosephWeizenbaum)開發(fā)了ELIZA,這是一個早期的NLP程序,為今天的聊天機(jī)器人奠定了基礎(chǔ)。
  • 1970年代和1980年代。 通用人工智能的實(shí)現(xiàn)被證明是難以捉摸的,而不是迫在眉睫的,受到計(jì)算機(jī)處理和內(nèi)存的局限性以及問題的復(fù)雜性的阻礙。政府和企業(yè)放棄了對人工智能研究的支持,導(dǎo)致了從1974年到1980年的休耕期,被稱為第一個“人工智能冬天”。在1980年代,對深度學(xué)習(xí)技術(shù)的研究和行業(yè)對愛德華·費(fèi)根鮑姆專家系統(tǒng)的采用引發(fā)了新一輪的人工智能熱情,但隨之而來的是政府資金和行業(yè)支持的又一次崩潰。第二個人工智能冬天一直持續(xù)到1990年代中期。
  • 1990年代。 計(jì)算能力的提高和數(shù)據(jù)的爆炸式增長引發(fā)了1990年代后期的人工智能復(fù)興,為我們今天看到的人工智能的顯著進(jìn)步奠定了基礎(chǔ)。大數(shù)據(jù)和計(jì)算能力的提高推動了自然語言處理、計(jì)算機(jī)視覺、機(jī)器人技術(shù)、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的突破。1997年,隨著人工智能技術(shù)的加速發(fā)展,IBM的“深藍(lán)”擊敗了俄羅斯國際象棋大師加里·卡斯帕羅夫,成為第一個擊敗國際象棋世界冠軍的計(jì)算機(jī)程序。
  • 2000年代。機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、自然語言處理、語音識別和計(jì)算機(jī)視覺的進(jìn)一步發(fā)展催生了塑造我們今天生活方式的產(chǎn)品和服務(wù)。其中包括2000年推出的谷歌搜索引擎和2001年推出的亞馬遜推薦引擎。Netflix開發(fā)了電影推薦系統(tǒng),F(xiàn)acebook推出了面部識別系統(tǒng),Microsoft推出了語音識別系統(tǒng),用于將語音轉(zhuǎn)錄為文本。IBM推出了Watson,Google啟動了其自動駕駛計(jì)劃Waymo。
  • 2010年代。2010年至2020年的十年見證了人工智能的穩(wěn)定發(fā)展。其中包括蘋果Siri和亞馬遜Alexa語音助手的推出;IBMWatson在 Jeopardy 上的勝利;自動駕駛汽車;開發(fā)第一個生成對抗網(wǎng)絡(luò);推出Google的開源深度學(xué)習(xí)框架TensorFlow;成立研究實(shí)驗(yàn)室 OpenAI,開發(fā)GPT-3語言模型和Dall-E圖像生成器;圍棋世界冠軍李世石被谷歌DeepMind的AlphaGo擊敗;以及實(shí)施基于人工智能的系統(tǒng),以高度準(zhǔn)確地檢測癌癥。
  • 2020年代。在過去的十年中,生成式人工智能(GenerativeAI)出現(xiàn)了,這是一種可以產(chǎn)生新內(nèi)容的人工智能技術(shù)。生成式AI從提示開始,提示可以是文本、圖像、視頻、設(shè)計(jì)、音符或AI系統(tǒng)可以處理的任何輸入。然后,各種AI算法會根據(jù)提示返回新內(nèi)容。內(nèi)容可以包括論文、問題的解決方案或由人物的圖片或音頻創(chuàng)建的逼真的假貨。ChatGPT-3、谷歌的Bard和Microsoft的威震天-圖靈NLG等語言模型的能力讓世界驚嘆不已,但該技術(shù)仍處于早期階段,其產(chǎn)生幻覺或歪曲答案的傾向就證明了這一點(diǎn)。

AI工具和服務(wù)

人工智能工具和服務(wù)正在快速發(fā)展。目前AI工具和服務(wù)的創(chuàng)新可以追溯到2012年的AlexNet神經(jīng)網(wǎng)絡(luò),它開創(chuàng)了基于GPU和大型數(shù)據(jù)集構(gòu)建的高性能AI的新時代。關(guān)鍵的變化是能夠以更具可擴(kuò)展性的方式在多個GPU內(nèi)核上并行訓(xùn)練神經(jīng)網(wǎng)絡(luò)。
在過去的幾年里,谷歌、Microsoft和OpenAI的AI發(fā)現(xiàn)與Nvidia開創(chuàng)的硬件創(chuàng)新之間的共生關(guān)系使得在更多互聯(lián)的GPU上運(yùn)行更大的AI模型成為可能,從而推動了性能和可擴(kuò)展性的顛覆性改進(jìn)。
這些AI杰出人物之間的合作對于ChatGPT最近的成功至關(guān)重要,更不用說其他數(shù)十項(xiàng)突破性AI服務(wù)了。以下是AI工具和服務(wù)的重要創(chuàng)新概要。
變形金剛。例如,谷歌率先找到了一種更有效的流程,用于在配備GPU的大型商用PC集群上提供AI訓(xùn)練。這為發(fā)現(xiàn)轉(zhuǎn)換器鋪平了道路,這些轉(zhuǎn)換器可以在未標(biāo)記的數(shù)據(jù)上自動訓(xùn)練AI的許多方面。
硬件優(yōu)化。同樣重要的是,像Nvidia這樣的硬件供應(yīng)商也在優(yōu)化微碼,以便在多個GPU內(nèi)核上并行運(yùn)行,以實(shí)現(xiàn)最流行的算法。英偉達(dá)聲稱,更快的硬件、更高效的AI算法、微調(diào)的GPU指令和更好的數(shù)據(jù)中心集成相結(jié)合,正在推動AI性能提高一百萬倍。英偉達(dá)還與所有云中心提供商合作,通過IaaS、SaaS和PaaS模型使此功能更易于作為AI即服務(wù)訪問。
生成式預(yù)訓(xùn)練變壓器。人工智能堆棧在過去幾年中也發(fā)展迅速。以前,企業(yè)必須從頭開始訓(xùn)練他們的AI模型。OpenAI、Nvidia、Microsoft、Google等越來越多的供應(yīng)商提供生成式預(yù)訓(xùn)練轉(zhuǎn)換器(GPT),可以針對特定任務(wù)進(jìn)行微調(diào),同時大幅降低成本、專業(yè)知識和時間。雖然一些最大的模型估計(jì)每次運(yùn)行的成本為500萬到1000萬美元,但企業(yè)可以以幾千美元的價(jià)格對最終的模型進(jìn)行微調(diào)。這樣可以縮短上市時間并降低風(fēng)險(xiǎn)。
AI云服務(wù)。阻礙企業(yè)在其業(yè)務(wù)中有效使用AI的最大障礙之一是將AI功能編織到新應(yīng)用程序或開發(fā)新應(yīng)用程序所需的數(shù)據(jù)工程和數(shù)據(jù)科學(xué)任務(wù)。所有領(lǐng)先的云提供商都在推出自己的品牌AI即服務(wù)產(chǎn)品,以簡化數(shù)據(jù)準(zhǔn)備、模型開發(fā)和應(yīng)用程序部署。主要示例包括AWSAI服務(wù)、GoogleCloudAI、MicrosoftAzureAI平臺、IBMAI解決方案和 Oracle云基礎(chǔ)設(shè)施AI服務(wù)。
尖端的AI模型即服務(wù)。領(lǐng)先的AI模型開發(fā)人員還在這些云服務(wù)之上提供尖端的AI模型。OpenAI擁有數(shù)十個大型語言模型,這些模型針對聊天、NLP、圖像生成和代碼生成進(jìn)行了優(yōu)化,這些模型通過Azure進(jìn)行預(yù)配。英偉達(dá)通過銷售針對所有云提供商提供的文本、圖像和醫(yī)療數(shù)據(jù)進(jìn)行優(yōu)化的AI基礎(chǔ)設(shè)施和基礎(chǔ)模型,采取了一種與云無關(guān)的方法。數(shù)以百計(jì)的其他參與者也提供針對各種行業(yè)和用例定制的模型。